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multiplet (violating the U(1) R-symmetry), it emerges in the action after elimination of

the auxiliary fields.
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1. Introduction

String theories require higher order in α′ corrections to their corresponding low energy

supergravity effective actions. The leading type II string corrections are of order α′3,

and include R4 terms (the fourth power of the Riemann tensor), both at tree level and one

loop [1, 2]. These R4 corrections are also present in the type I/heterotic effective actions [3]

and in M-theory [4].

These string corrections to supergravity theories should obviously be supersymmetric.

Unfortunately there is still no known way to compute these corrections in a manifestly

supersymmetric way, although important progresses have been achieved. The supersym-

metrization of these higher order string/M-theory terms has been a topic of research for a

long time [5, 6].

After compactification to four dimensions, one obtains a supergravity theory, whose

number N of supersymmetries and different matter couplings depend crucially on the

manifold where the compactification is taken. Most of the times, in four dimensions the

higher order terms are studied as part of the supergravity theories, either simple [7 – 9]

or extended [10 – 13], and are therefore considered only from a supergravity point of view.

These theories are believed to be divergent, and those are candidate counterterms. Their

possible stringy origin, as higher order terms in string/M theory after compactification

from ten/eleven dimensions, is often neglected. One of the reasons for that criterion is

chronological: the study of the quantum properties of four dimensional supergravity the-

ories started several years before superstring theories were found to be free of anomalies
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and taken as the main candidates to a unified theory of all the interactions. In higher

dimensions the procedure has been different: the low-energy limits of superstring theories

are the different ten-dimensional supergravity theories. People have studied higher order

corrections to these theories most of the times in the context of string theory, which requires

them to be supersymmetric.

Tacitly one makes the natural assumption that, when compactified, these higher or-

der terms also emerge as corrections to the corresponding four-dimensional supergravity

theories. But this does not necessarily need to be the case. The quantum behavior of

these theories is still an active topic of research, and recent works claim that the maximal

N = 8 theory may even be ultraviolet finite [14, 15]. If that is the case, the N = 8 higher

order terms will not be necessary from a supergravity point of view, although they will

still appear in the N = 8 theory we obtain when we compactify type II superstrings on a

six-dimensional torus. All the higher order terms considered are, from a supergravity point

of view, candidate counterterms; it has never been explicitly shown that they indeed ap-

pear in the quantum effective actions with nonzero coefficients. Even in N < 8 theories, it

may eventually happen that some of these counterterms are not necessary as supergravity

counterterms, but are needed as compactified string corrections.

From the known bosonic terms in the different α′-corrected string effective actions in

ten dimensions, one should therefore determine precisely which terms should emerge in four

dimensions for each compactification manifold, not worrying if they are needed in d = 4

supergravity. This is the goal of the present article, but here we restrict ourselves mainly

to the order α′3 R4 terms. We will also be mainly (but not strictly) concerned with the

simplest toroidal compactifications; the reason is that the terms one gets are ”universal”,

i.e. they must be present (possibly together with other moduli-dependent terms) no matter

which compactification manifold we take.

The article is organized as follows. In section 2 we review the purely gravitational parts

in the effective actions, up to order α′3, of type IIA, IIB and heterotic strings, at tree level

and one loop. In section 3 we analyze their dimensional reduction to d = 4. We show that

there are two independent R4 terms in the four dimensional superstring effective action,

although a classical result tells us that, of these terms, only the one which was previously

known can be directly supersymmetrized. The supersymmetrization of the new R4 term

gives rise to a new problem, which we address in N = 1 supergravity in section 4 by

considering the coupling of the new R4 term to a chiral multiplet in superspace.

2. String effective actions to order α
′3 in d = 10

The Riemann tensor admits, in d spacetime dimensions, the following decomposition in

terms of the Weyl tensor Wmnpq, the Ricci tensor Rmn and the Ricci scalar R:

Rmnpq = Wmnpq −
1

d − 2
(gmpRnq − gnpRmq + gnqRmp − gmqRnp)

+
1

(d − 1)(d − 2)
(gmpgnq − gnpgmq)R. (2.1)
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As proven in [16], in d = 10 dimensions, the critical dimension of superstring theories,

there are seven independent real scalar polynomials made from four powers of the irre-

ducible components of the Weyl tensor, which we label, according to [5], as R41, . . . , R46, A7.

These polynomials are given by

R41 = WmnpqWnrqtWrstuWsmup,

R42 = WmnpqWnrqtWms
tuW up

sr ,

R43 = WmnpqW pq
rs Wmn

tuWrstu,

R44 = WmnpqWmnpqWrstuWrstu,

R45 = WmnpqWnrpqWrstuWsmtu,

R46 = WmnpqW pq
rs Wmr

tuWnstu,

A7 = W pq
mn Wmt

puW ns
tr Wur

qs. (2.2)

The superstring α′3 effective actions are given in terms of two independent bosonic

terms, from which two separate superinvariants are built [5, 17]. These terms are given, at

linear order in the NS-NS gauge field Bmn, by:

IX = t8t8R4 +
1

2
ε10t8BR4,

IZ = −ε10ε10R4 + 4ε10t8BR4. (2.3)

Each t8 tensor has eight free spacetime indices. It acts in four two-index antisymmetric

tensors, as defined in [1, 2], where one can also find the precise index contractions. In terms

of the seven fundamental polynomials R41, . . . , R46, A7 from (2.2), the purely gravitational

parts of IX and IZ , which we denote by X and Z respectively, are given by [5]:

X := t8t8W4 = 192R41 + 384R42 + 24R43 + 12R44 − 192R45 − 96R46,
1

8
Z := −1

8
ε10ε10W4 = X + 192R46 − 768A7. (2.4)

For the heterotic string two extra terms Y1 and Y2 appear at order α′3 at one loop

level [5, 6, 17], the pure gravitational parts of which being given respectively by

Y1 := t8
(
trW2

)2
= −4R43 − 2R44 + 16R45 + 8R46,

Y2 := t8trW4 = 8R41 + 16R42 − 4R45 − 2R46. (2.5)

with trW2 = WmnpqW qp
rs , etc. Only three of these four invariants are independent because,

as one may see, one has the relation X = 24Y2 − 6Y1.

To be precise, let’s review the form of the purely gravitational superstring and heterotic

effective actions in the string frame up to order α′3. The perturbative terms occur at string

tree and one loop levels; there are no higher loop contributions [4, 17 – 19].

The effective action of type IIB theory must be written, because of its well known

SL(2, Z) invariance, as a product of a single linear combination of order α′3 invariants and

an overall function of the complexified coupling constant Ω = C0+ie−φ, C0 being the axion.
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This function accounts for perturbative (loop) and non-perturbative (D-instanton [18, 20])

string contributions. The perturbative part is given in the string frame by

1√−g
LIIB

∣∣∣∣
α′3

= −e−2φα′3 ζ(3)

3 × 210

(
IX − 1

8
IZ

)
− α′3 1

3 × 216π5

(
IX − 1

8
IZ

)
. (2.6)

Type IIA theory has exactly the same term of order α′3 as type IIB at tree level, but

at one loop the sign in the coefficient of IZ is changed when compared to type IIB:

1√−g
LIIA

∣∣∣∣
α′3

= −e−2φα′3 ζ(3)

3 × 210

(
IX − 1

8
IZ

)
− α′3 1

3 × 216π5

(
IX +

1

8
IZ

)
. (2.7)

The reason for this sign flip is that at one string loop the relative GSO projection between

the left and right movers is different for type IIA and type IIB, since these two theories

have different chirality properties [21, 22].

Type II superstring theories only admit α′3 and higher corrections because the corres-

ponding sigma model is two and three-loop finite, as shown in [2]: ten dimensional N = 2

supersymmetry prevents these corrections. Heterotic string theories have N = 1 super-

symmetry in ten dimensions, which allows corrections to the sigma model already at order

α′, including R2 corrections. These corrections come both from three-graviton scattering

amplitudes and anomaly cancellation terms (the Green-Schwarz mechanism). The effective

action is then given in the string frame, up to order α′3 and neglecting the contributions

of gauge fields, by

1√−g
Lheterotic

∣∣∣∣
α′+α′3

= e−2φ

[
1

16
α′trR2 +

1

29
α′3Y1 −

ζ(3)

3 × 210
α′3

(
IX − 1

8
IZ

)]

−α′3 1

3 × 214π5
(Y1 + 4Y2) . (2.8)

For the type IIB theory only the combination IX − 1
8IZ is present in the effective action.

For the type IIA and heterotic theories different combinations show up. The supersym-

metrization of these terms has been the object of study in many articles [5, 6], although a

complete understanding of the full supersymmetric effective actions is still lacking. Here

we are more concerned with the number of independent superinvariants they would belong

to. Because in every theory the IX − 1
8IZ term includes a transcendental factor ζ(3) (which

is not shared by any other bosonic term at the same order in α′), it cannot be related to

other bosonic terms by supersymmetry and requires its own superinvariant. This way in

type IIA and heterotic string theories one then needs at least one R4 superinvariant for

the tree level terms and another one for one loop.

Type IIA theory comes from compactification of M-theory on S
1, but its tree level

α′3 terms vanish on the eleven-dimensional limit, as shown in [4]. Therefore the one-loop

type IIA R4 term is the true compactification of the d = 11 R4 term. In M-theory,

there is only one R4 superinvariant. The existence of this term was shown in [23], using

spinorial cohomology, and its coefficient was fixed using anomaly cancellation arguments.

The full calculation, using pure spinor BRST cohomology, was carried out in [24], where

it was shown that this term is indeed unique and its coefficient can be directly determined

without using the anomaly cancellation argument.
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For a more detailed review of the present knowledge of R4 terms in M-theory and super-

gravity, including a discussion of their supersymmetrization and related topics, see [25].

3. String effective actions to order α
′3 in d = 4

In this section we analyze the reduction to four dimensions of the effective actions consi-

dered in the previous section.

3.1 R4 terms in d = 4 from d = 10

It is interesting to check how many independent superinvariants one still has in four dimen-

sions. In this case, the Weyl tensor can still be decomposed in its self-dual and antiself-dual

parts1:

Wµνρσ = W+
µνρσ + W−

µνρσ ,W∓
µνρσ :=

1

2

(
Wµνρσ ± i

2
ε λτ
µν Wλτρσ

)
, (3.1)

which have the following properties:

W+
µνρσW− ρσ

τλ = 0,W±
µνρσW±νρσ

τ =
1

4
gµτW2

±. (3.2)

Besides the usual Bianchi identities, the Weyl tensor in four dimensions obeys Schouten

identities like this one:

Wµν
ρτWµνσλ =

1

4
(gρσgτλ − gρλgτσ)W2 + 2

(
WρµνσW µν

λ τ −WτµνσW µν
λ ρ

)
. (3.3)

Because of the given properties, the Bel-Robinson tensor, which can be shown to be totally

symmetric, is given in four dimensions by

W+
µρνσW−ρ σ

τ λ .

In the van der Warden notation, using spinorial indices, the decomposition (3.1) is written

as [26]

WAȦBḂCĊDḊ = −2εȦḂεĊḊWABCD − 2εABεCDWȦḂĊḊ (3.4)

with the totally symmetric WABCD,WȦḂĊḊ being given by (in the notation of [9])

WABCD := −1

8
W+

µνρσσµν
ABσρσ

CD, W
ȦḂĊḊ

:= −1

8
W−

µνρσσµν

ȦḂ
σρσ

ĊḊ
.

Using this notation, calculations involving the Weyl tensor become much more simplified.

The Bel-Robinson tensor is simply given by WABCDWȦḂĊḊ.

In reference [16] it is also shown that, in four dimensions, there are only two indepen-

dent real scalar polynomials made from four powers of the Weyl tensor. Like in [9], these

polynomials can be written, using the previous notation, as

W2
+W2

− = WABCDWABCDWȦḂĊḊWȦḂĊḊ, (3.5)

W4
+ + W4

− =
(
WABCDWABCD

)2
+

(
WȦḂĊḊWȦḂĊḊ

)2
. (3.6)

1In the previous section, we used latin letters - m, n, . . . - to represent ten dimensional spacetime indices.

From now on we will be only working with four dimensional spacetime indices which, to avoid any confusion,

we represent by greek letters µ, ν, . . .
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In particular, the seven polynomials R41, . . . , R46, A7 from (2.2), when computed directly in

four dimensions (i.e. replacing the ten dimensional indices m,n, . . . by the four dimensional

indices µ, ν, . . .) should be expressed in terms of them. That is what we present in the

following. For that we wrote each polynomial in the van der Warden notation, using (3.4),

and we used some properties of the four dimensional Weyl tensor, like (3.2) and (3.3). This

way we have shown that, in four dimensions,

R41 =
1

24
W4

+ +
1

24
W4

− − 5

8
W2

+W2
−, R42 =

1

12
W4

+ +
1

12
W4

− +
11

8
W2

+W2
−,

R43 =
1

6
W4

+ +
1

6
W4

− − 4W2
+W2

−, R44 = W4
+ + W4

− + 2W2
+W2

−,

R45 =
1

4
W4

+ +
1

4
W4

− +
1

2
W2

+W2
−, R46 = −1

6
W4

+ − 1

6
W4

− − 3

2
W2

+W2
−,

A7 = − 1

24
W4

+ − 1

24
W4

− − 1

4
W2

+W2
−.

(3.7)

Using the definitions (2.4), we have then

X = 24
(
W4

+ + W4
−

)
+ 384W2

+W2
−, (3.8)

1

8
Z = 24

(
W4

+ + W4
−

)
+ 288W2

+W2
−,

or

X − 1

8
Z = 96W2

+W2
−, (3.9)

X +
1

8
Z = 48

(
W4

+ + W4
−

)
+ 672W2

+W2
−. (3.10)

X− 1
8Z is the only combination of X and Z which in d = 4 does not contain (3.6), i.e. which

contains only the square of the Bel-Robinson tensor (3.5). We find it extremely interesting

that exactly this very same combination (or, to be precise, IX − 1
8IZ) is, from (2.3), the

only one which does not depend on the ten dimensional field Bmn and, therefore, due to

its gauge invariance, is the only one that can appear in string theory at arbitrary loop

order. This combination is indeed present at string tree level in every superstring theory,

multiplied by a transcendental factor ζ(3), as we have seen in the previous section.

From (2.5) one also derives in d = 4 :

Y1 = 8W2
+W2

−, (3.11)

Y1 + 4Y2 =
X

6
+ 2Y1 = 80W2

+W2
− + 4

(
W4

+ + W4
−

)
. (3.12)

As seen in the previous section, for the type IIB theory only the combination IX − 1
8IZ

(or W2
+W2

− in d = 4) is present in the effective action (2.6). For the type IIA and heterotic

theories different combinations show up. In these two cases, W4
+ +W4

− shows up at string

one loop level in the effective actions (2.7) and (2.8) of these theories when they are

compactified to four dimensions. At string tree level, though, for all these theories in d = 4

only W2
+W2

− shows up. This fact is quite remarkable, particularly for the heterotic theory,

if we consider that the two different contributions IX − 1
8IZ and Y1 in (2.8) have completely

different origins.
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3.2 Moduli-independent terms in d = 4 effective actions

All the terms we have been considering, when taken in the Einstein frame (which is

the right frame for a supergravity analysis to be performed), are multiplied by an adequate

power of exp(φ). To be precise, consider an arbitrary term Ii(R,M) in the string frame

lagrangian in d dimensions. Ii(R,M) is a function, with conformal weight wi, of any given

order in α′, of the Riemann tensor R and any other fields - gauge fields, scalars, and also

fermions - which we generically designate by M. To pass from the string to the Einstein

frame, we redefine the metric through a conformal transformation involving the dilaton,

given by

gmn → exp

(
4

d − 2
φ

)
gmn,

Rmn
pq → exp

(
− 4

d − 2
φ

)
R̃ pq

mn , (3.13)

with R̃ pq
mn = Rmn

pq − δ[m
[p∇n]∇ q]φ. The transformation above takes Ii(R,M) to

e
4

d−2
wiφIi(R̃,M). After considering all the dilaton couplings and the effect of the conformal

transformation on the metric determinant factor
√−g, the string frame lagrangian

1

2

√−g e−2φ
(
−R + 4 (∂mφ) ∂mφ +

∑

i

Ii(R,M)
)

(3.14)

is converted into the Einstein frame lagrangian

1

2

√−g

(
−R− 4

d − 2
(∂mφ) ∂mφ +

∑

i

e
4

d−2
(1+wi)φIi(R̃,M)

)
. (3.15)

We finish this section by writing, for later reference, the effective ac-

tions (2.6), (2.7), (2.8) in four dimensions, in the Einstein frame (considering only terms

which are simply powers of the Weyl tensor, without any other fields except their couplings

to the dilaton, and introducing the d = 4 gravitational coupling constant κ):

κ2

√−g
LIIB

∣∣∣∣
R4

= −ζ(3)

32
e−6φα′3W2

+W2
− − 1

211π5
e−4φα′3W2

+W2
−, (3.16)

κ2

√−g
LIIA

∣∣∣∣
R4

= −ζ(3)

32
e−6φα′3W2

+W2
−

1

212π5
e−4φα′3

[(
W4

+ + W4
−

)
+ 224W2

+W2
−

]
, (3.17)

κ2

√−g
Lhet

∣∣∣∣
R2+R4

= − 1

16
e−2φα′

(
W2

+ + W2
−

)
+

1

64
(1 − 2ζ(3)) e−6φα′3W2

+W2
−

− 1

3 × 212π5
e−4φα′3

[(
W4

+ + W4
−

)
+ 20W2

+W2
−

]
. (3.18)

Here one must refer that these are only the moduli-independent terms of these effective

actions. Strictly speaking these are not moduli-independent terms, since they are all mul-

tiplied by the volume of the compactification manifold (a factor we omitted for simplicity).
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But they are always present, no matter which compactification is taken. The complete ac-

tion, for every different compactification manifold, includes many moduli-dependent terms

which we do not consider here.

A complete study of the heterotic string moduli dependent terms, but only for α′ = 0

and for a T
6 compactification, can be seen in [27]. The tree level and one loop contributions

to the four graviton amplitude, for a compactification on an n-dimensional torus T
n of ten

dimensional type IIA/IIB string theories, can be found in [20].

A detailed study of these moduli-dependent R4 terms, at string tree level and one

loop, for type IIA and IIB superstrings, for several compactification manifolds preserving

different ammounts of supersymmetry, is available in [28]. In many cases one must consider

extra contributions to the effective action coming from string winding modes and worldsheet

instantons. For the particularly simple but illustrative case of an S
1 compactification

(presented in detail in [20, 28]), the tree level terms for both type IIA and IIB theories are

trivial: they are simply multiplied by the volume 2πR. At one loop level, one gets terms

proportional to the compactification radius R; by applying T -duality to these terms, one

gets other terms proportional to α′

R
. This way one gets the term X + 1

8Z, in d = 9, even

for type IIB effective action (in this case, only at a higher order in α′). The same is true

in d = 4, for more complicated compactification manifolds.

To conclude, for any d = 4 compactification of heterotic or superstring theories one

has, in the respective effective action, the two different d = 4 R4 terms (3.5) and (3.6),

multiplied by a corresponding dilaton factor and maybe some moduli terms. This is the

most important result for the rest of this paper. From now on we will be concerned with

the supersymmetrization of these terms.

4. R4 terms and d = 4 supersymmetry

Up to now, we have only been considering bosonic terms for the effective actions, but we are

interested in their full supersymmetric completion in d = 4. In general each superinvariant

consists of a leading bosonic term and its supersymmetric completion, given by a series of

terms with fermions. In this work we are particularly focusing on R4 terms.

4.1 Some known results

It has been known for a long time that the square of the Bel-Robinson tensor W2
+W2

−

can be made supersymmetric, in simple [7, 8] and extended [10, 12, 13] four dimensional

supergravity. For the term W4
+ +W4

− there is a ”no-go theorem”, based on N = 1 chirality

arguments [29]: for a polynomial I(W) of the Weyl tensor to be supersymmetrizable, each

one of its terms must contain equal powers of W+
µνρσ and W−

µνρσ. The whole polynomial

must then vanish when either W+
µνρσ or W−

µνρσ do. The only exception is W2 = W2
+ +

W2
−, which in d = 4 is part of the Gauss-Bonnet topological term and is automatically

supersymmetric.

But the new term (3.6) is part of the heterotic and type IIA effective actions at one

loop which must be supersymmetric, even after compactification to d = 4. One must then

– 8 –
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find out how this term can be made supersymmetric, circumventing the N = 1 chirality

argument from [29]. That is our main goal in this paper.

One must keep in mind the assumptions in which it was derived, namely the preserva-

tion by the supersymmetry transformations of R-symmetry which, for N = 1, corresponds

to U(1) and is equivalent to chirality. That is true for pure N = 1 supergravity, but to

this theory and to most of the extended supergravity theories (except N = 8) one may add

matter couplings and extra terms which violate U(1) R-symmetry and yet can be made

supersymmetric, inducing corrections to the supersymmetry transformation laws which do

not preserve U(1) R-symmetry.

Since the article [29] only deals with the term (3.6) by itself, one can consider extra

couplings to it and only then try to supersymmetrize. These couplings could eventually

(but not necessarily) break U(1) R-symmetry. This procedure is very natural, taking into

account the scalar couplings that multiply (3.6) in the actions (3.17), (3.18).

Considering couplings to other multiplets and breaking U(1) may be possible in N = 4

supergravity, for T
6 compactifications of heterotic strings, but N = 1 supergravity has the

advantage of being much less restrictive than its extended counterparts. To our purposes,

the simplest and most obvious choice of coupling is to N = 1 chiral multiplets. That is

what we do in the following subsection.

4.2 W4
+ + W4

− in N = 1 matter-coupled supergravity

The N = 1 supergravity multiplet is very simple. What also makes this theory easier is

the existence of several different full off-shell formulations. We work in standard ”old mini-

mal” supergravity, having as auxiliary fields a vector AAȦ, a scalar M and a pseudoscalar

N , given as θ = 0 components of superfields GAȦ, R,R :2

GAȦ

∣∣ =
1

3
AAȦ, R

∣∣ = 4 (M + iN) , R| = 4 (M − iN) . (4.1)

Besides there is a chiral superfield WABC and its hermitian conjugate WȦḂĊ , which together

at θ = 0 constitute the field strength of the gravitino. The Weyl tensor shows up as the

first θ term: in the notation of (3.4), at the linearized level,

∇DWABC

∣∣ = WABCD + . . . (4.2)

W4
+ +W4

− is proportional to the θ = 0 term of
(
∇2W 2

)2
+h.c., which cannot result from a

superspace integration. This whole term itself is U(1) R-symmetric, like ∇DWABC ; indeed,

the components of the Weyl tensor are U(1) R-neutral, according to the weights [9]

∇A 7→ +1, R 7→ +2, Gm 7→ 0,WABC 7→ −1.

This way, as expected, one needs some extra coupling to (3.6) in order to break U(1)

R-symmetry. We can use the fact that there are many more matter fields with its origin

in string theory and many different matter multiplets to which one can couple the N = 1

supergravity multiplet in order to build superinvariants. This way we hope to find some

2The N = 1 superspace conventions are exactly the same as in [8, 9].
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coupling which breaks U(1) R-symmetry and simultaneously supersymmetrizes (3.6), which

could result from the elimination of the matter auxiliary fields.

Having this in mind, we consider a chiral multiplet, represented by a chiral superfield Φ

(we could take several chiral multiplets Φi, but we restrict ourselves to one for simplicity),

and containing a scalar field Φ = Φ|, a spin−1
2 field ∇AΦ|, and an auxiliary field F =

−1
2 ∇2Φ

∣∣. This superfield and its hermitian conjugate couple to N = 1 supergravity in its

simplest version through a superpotential

P (Φ) = d + aΦ +
1

2
mΦ2 +

1

3
gΦ3 (4.3)

and a Kähler potential K
(
Φ,Φ

)
= − 3

κ2 ln

(
−Ω(Φ,Φ)

3

)
, with Ω

(
Φ,Φ

)
given by

Ω
(
Φ,Φ

)
= −3 + ΦΦ + cΦ + cΦ. (4.4)

In order to include the term (3.6), we take the following effective action:

L = − 1

6κ2

∫
E

[
Ω

(
Φ,Φ

)
+ α′3

(
bΦ

(
∇2W 2

)2
+ bΦ

(
∇2

W
2
)2

)]
d4θ (4.5)

− 2

κ2

(∫
ǫP (Φ) d2θ + h.c.

)

=
1

4κ2

∫
ǫ

[(
∇2

+
1

3
R

)(
Ω

(
Φ,Φ

)
+ α′3

(
bΦ

(
∇2W 2

)2
+ bΦ

(
∇2

W
2
)2

))

−8P (Φ)

]
d2θ + h.c.

E is the superdeterminant of the supervielbein; ǫ is the chiral density. The Ω
(
Φ,Φ

)
and

P (Φ) terms represent the most general renormalizable coupling of a chiral multiplet to

pure supergravity [30]; the extra terms represent higher-order corrections. Of course (4.5)

is meant as an effective action and therefore does not need to be renormalizable.

The component expansion of this action may be found using the explicit θ expansions

for ǫ and ∇2W 2 given in [9]. From (4.2), we have

∇2W 2
∣∣ = −2W2

+ + . . . (4.6)

It is well known that an action of this type in pure supergravity (without the higher-

order corrections) will give rise, in x-space, to a leading term given by 1
6κ2 e Ω|R instead

of the usual − 1
2κ2 eR.3 In order to remove the extra ΦR terms in 1

6κ2 e Ω| R, one takes

a Φ,Φ-dependent conformal transformation [30]; if one also wants to remove the higher

order ΦR terms, this conformal transformation must be α′-dependent. Here we are only

interested in obtaining the supersymmetrization of W4
+ + W4

−; therefore we will not be

concerned with the Ricci terms of any order.

3As usual in supergravity theories we work with the vielbein and not with the metric. Therefore, here

we write e, the determinant of the vielbein, instead of
√−g.
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If one expands (4.5) in components, one does not directly get (3.6), but one should look

at the auxiliary field sector. Because of the presence of the higher-derivative terms, the

auxiliary field from the original conformal supermultiplet Am also gets higher derivatives

in its equation of motion, and therefore it cannot be simply eliminated [8, 12]. Here we

only consider the much simpler terms which include the chiral multiplet auxiliary field F .

Take the superfields

C̃ = c + α′3b
(
∇2W 2

)2
, Ω̃

(
Φ,Φ, C̃, C̃

)
= −3 + ΦΦ + C̃Φ + C̃Φ, (4.7)

so that the action (4.5) becomes

1

4κ2

∫
ǫ

[(
∇2

+
1

3
R

)
Ω̃

(
Φ,Φ, C̃, C̃

)
− 8P (Φ)

]
d2θ + h.c. (4.8)

and all the α′3 corrections considered in it become implicitly included in Ω̃
(
Φ,Φ, C̃, C̃

)

through C̃, C̃. We also define C̃ = C̃| and the functional derivative PΦ = ∂P/∂Φ. From

now on, we will work in x-space and assume there is no confusion between the super-

field functionals Ω̃
(
Φ,Φ, C̃, C̃

)
, P (Φ), PΦ and their corresponding x-space functionals

Ω̃
(
Φ,Φ, C̃, C̃

)
, P (Φ), PΦ. The terms we are looking for are given by [30]

κ2LF,F =
1

9
eΩ̃

(
Φ,Φ, C̃, C̃

)
∣∣∣∣∣∣
M − iN − 3

Ω̃
(
Φ,Φ, C̃, C̃

)
(
Φ + C̃

)
F

∣∣∣∣∣∣

2

−e
3 + C̃C̃

Ω̃2
(
Φ,Φ, C̃, C̃

)FF + eP̃ΦF + eP̃ΦF. (4.9)

This equation would be exact, with P̃Φ = PΦ and P̃Φ = PΦ, if we were only considering

the θ = 0 components of C̃, C̃. But, of course (as it is clear from (4.5)), coupled to F

we will have ∇Ȧ

(
∇2W 2

)2
and ∇2 (

∇2W 2
)2

terms (and ∇A

(
∇2

W
2
)2

and ∇2
(
∇2

W
2
)2

terms coupled to F̄ ). These terms will not play any role for our purpose (which is to show

that there exists a supersymmetric lagrangian which contains (3.6), and not necessarily

to compute it in full), and therefore we do not compute them explicitly. We write them

in (4.9) because we include them in P̃Φ, through the definition (analogous for P̃Φ)

P̃Φ = PΦ +
(
∇ȦC̃ + ∇2

C̃ terms
)

.

The first term in (4.9) contains the well known term −1
3e

(
M2 + N2

)
from ”old mini-

mal” supergravity. Because the auxiliary fields M,N belong to the chiral compensating

multiplet, their field equation should be algebraic, despite the higher derivative correc-

tions [8, 12]. That calculation should still require some effort; plus, those M,N auxiliary

fields should not generate by themselves terms which violate U(1) R-symmetry: these terms

should only occur through the elimination of F, F̄ . This is why we will only be concerned
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with these auxiliary fields, which therefore can be easily eliminated through their field

equation




(
Φ + C̃

)(
Φ + C̃

)

Ω̃
(
Φ,Φ, C̃, C̃

) − 3 + C̃C̃

Ω̃2
(
Φ,Φ, C̃, C̃

)


 F = −P̃Φ − 1

3

(
Φ + C̃

)
(M − iN) .

Replacing F, F̄ in LF,F , one gets

κ2LF,F = −e
P̃ΦP̃ΦΩ̃2

(
Φ,Φ, C̃, C̃

)

(
Φ + C̃

) (
Φ + C̃

)
Ω̃

(
Φ,Φ, C̃, C̃

)
−

(
C̃C̃ + 3

) + M,N terms. (4.10)

This is a nonlocal, nonpolynomial action. Since we take it as an effective action, we can

expand it in powers of the fields Φ,Φ, but also in powers of C̃, C̃. These last fields contain

both the couplings of Φ to supergravity c and the string parameter α′; expanding in these

fields is equivalent to expanding in a certain combination of these parameters. Here one

should notice that we are only considering up to α′3 terms. If we wanted to consider higher

(than α′3) order corrections, together with these we should also have included a priori

in (4.5) the leading higher order corrections, which should be independently supersym-

metrized. Considering solely the higher than α′3 order corrections coming directly from

the elimination of (any of) the auxiliary fields from the α′3 effective action (4.5) would be

misleading. The correct expansion of (4.5) to take, in the first place, is in α′3. That is

what we do in the following, after replacing C̃, C̃ by their explicit superfield expressions

given by (4.7) and taking θ = 0. We also exclude the M,N contributions and the higher

θ terms from C̃, C̃ in P̃Φ, P̃ Φ, for the reasons mentioned before: they are not significant

for the term we are looking for. The resulting lagrangian we get (which we still call LF,F

to keep its origin clear, although it is not anymore the complete lagrangian resulting from

the elimination of F, F̄ ) is

κ2LF,F = −e
PΦPΦΩ2

(
Φ,Φ

)
(
Φ + c

)
(Φ + c) Ω

(
Φ,Φ

)
− (cc + 3)

(4.11)

+α′3 ePΦPΦΩ
(
Φ,Φ

)
((

Φ + c
)
(Φ + c)Ω

(
Φ,Φ

)
− (cc + 3)

)2

[
−2

(
bΦ

(
∇2W 2

)2
∣∣∣

+ bΦ
(
∇2

W
2
)2

∣∣∣∣
) ((

Φ + c
)
(Φ + c) Ω

(
Φ,Φ

)
− (cc + 3)

)

+Ω
(
Φ,Φ

) (
−bcΦ

(
∇2W 2

)2
∣∣∣ − bcΦ

(
∇2

W
2
)2

∣∣∣∣

+
(
Φ + c

)
(Φ + c)

(
bΦ

(
∇2W 2

)2
∣∣∣ + bΦ

(
∇2

W
2
)2

∣∣∣∣
)

+ Ω
(
Φ,Φ

) (
b (c + Φ)

(
∇2W 2

)2
∣∣∣ + b

(
c + Φ

) (
∇2

W
2
)2

∣∣∣∣
))]

+ . . .

If we look at the last line of the previous equation, we can already identify the term we are

looking for. This is still a nonlocal, nonpolynomial action, which we expand now in powers
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of the fields Φ,Φ coming from the denominators and the PΦPΦ factors. We obtain

κ2LF,F = −15e
(3 + cc)

(3 + 4cc)2
(
maΦ + maΦ

) (
cΦ + cΦ

)

+e
2c3c3 + 60c2c2 + 117cc − 135

(3 + 4cc)3
aaΦΦ − 36α′3e

(
bc

(
∇2W 2

)2
∣∣∣

+bc
(
∇2

W
2
)2

∣∣∣∣
)

aa + maΦ + maΦ + gaΦ2 + gaΦ
2
+ mmΦΦ

(3 + 4cc)2

−3α′3aa
74c2c2 + 192cc − 657

(3 + 4cc)4
ΦΦ

(
bc

(
∇2W 2

)2
∣∣∣ + bc

(
∇2

W
2
)2

∣∣∣∣
)

+15α′3e
aa + maΦ + maΦ

(3 + 4cc)3

[(
c2 (21 + 4cc) Φ + (−9 + 6cc) Φ

)
b
(
∇2W 2

)2
∣∣∣

+
(
c2 (21 + 4cc) Φ + (−9 + 6cc) Φ

)
b

(
∇2

W
)2

∣∣∣∣
]

+ . . . (4.12)

This way we are able to supersymmetrize W4
+ + W4

−, although we had to introduce a

coupling to a chiral multiplet. These multiplets show up after d = 4 compactifications

of superstring and heterotic theories and truncation to N = 1 supergravity [31]. Since

from (4.6) the factor in front of W4
+ (resp. W4

−) in (4.12) is given by 72bcaa

(3+4cc)2
(resp.

72bcaa

(3+4cc)2
), for this supersymmetrization to be effective, the factors a from P (Φ) in (4.3)

and c from Ω
(
Φ,Φ

)
in (4.4) (and of course b from (4.5)) must be nonzero.

The action (4.12) includes the N = 1 supersymmetrization of W4
+ + W4

−, but with-

out any coupling to a scalar field or only with couplings to powers of the scalar field

from the chiral multiplet, which may be seen as compactification moduli. But, as one

can see from (3.17), (3.18), this term should be coupled to powers of the dilaton. It is

well known [31] that in N = 1 supergravity the dilaton is part of a linear multiplet, to-

gether with an antisymmetric tensor field and a Majorana fermion. One must then work

out the coupling to supergravity of the linear and chiral multiplets. As usual one starts

from conformal supergravity and obtain Poincaré supergravity by coupling to compensator

multiplets which break superconformal invariance through a gauge fixing condition. When

there are only chiral multiplets coupled to supergravity [30], this gauge fixing condition

can be generically solved, so that a lagrangian has been found for an arbitrary coupling

of the chiral multiplets. In the presence of a linear multiplet, there is no such a generic

solution of the gauge fixing condition, which must be solved case by case. Therefore, there

is no generic lagrangian for the coupling of supergravity to linear multiplets. We shall not

consider this problem here, like we did not in [8, 9]. In both cases we were only interested

in studying the N = 1 supersymmetrization of the two different d = 4 R4 terms. The

coupling of a linear multiplet to these terms can be determined following the procedure

in [32].

4.3 W4
+ + W4

− in extended supergravity

W4
+ + W4

− must also arise in extended d = 4 supergravity theories, for the reasons

we saw, but the ”no-go” result of ([29]) should remain valid, since it was obtained for
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N = 1 supergravity, which can always be obtained by truncating any extended theory.

For extended supergravities, the chirality argument should be replaced by preservation by

supergravity transformations of U(1), which is a part of R-symmetry.

N = 2 supersymmetrization of W4
+ + W4

− should work in a way similar to what we

saw for N = 1. N = 2 chiral superfields must be Lorentz and SU(2) scalars but they can

have an arbitrary U(1) weight, which allows supersymmetric U(1) breaking couplings.

A similar result should be more difficult to implement for N ≥ 3, because there are

no generic chiral superfields. Still, there are other multiplets than the Weyl, which one

can consider in order to couple to W4
+ + W4

− and allow for its supersymmetrization. The

only exception is N = 8 supergravity, which only allows for the Weyl multiplet. N = 8

supersymmetrization of W4
+ + W4

− should therefore be a very difficult problem, which we

expect to study in a future work.

Related to this is the issue of possible finiteness of N = 8 supergravity, which has

been a recent topic of research. A linearized three-loop candidate (the square of the Bel-

Robinson tensor) has been presented in [10]. But recent works [14] show that there is no

three-loop divergence (which includes the two R4 terms). Power-counting analysis from

unitarity cutting-rule techniques predicted the lowest counterterm to appear at least at five

loops [33]. An improved analysis based on harmonic superspace power-counting improved

this lower limit to six loops [34]. In [11] a seven loop counterterm was proposed, but in [15]

it is proposed from string perturbation theory arguments that the four graviton amplitude

may be eight-loop finite. The claim in [14] is even stronger: N = 8 supergravity may have

the same degree of divergence as N = 4 super-Yang-Mills theory and may therefore be

ultraviolet finite. But no definitive calculations have been made yet to prove that claim;

up to now, there is no firmly established example of a counterterm which does not arise in

the effective actions but would be allowed by superspace non-renormalization theorems.

Because of all these open problems, we believe that higher order terms in N = 8

supergravity definitely deserve further study.

5. Conclusions

In this paper, we analyzed in detail the reduction to four dimensions of the purely

gravitational higher-derivative terms in the string effective actions, up to order α′3, for

heterotic and type IIA/IIB superstrings. From this analysis we have shown that in the

four dimensional heterotic and type IIA string effective actions there must exist, besides

the usual square of the Bel-Robinson tensor W2
+W2

−, a new R4 term given in terms of

the Weyl tensor by W4
+ + W4

−. This new term results from the dimensional reduction

of the order α′3 effective actions, at one string loop, of these theories. By requiring four

dimensional supersymmetry, this term must be, like any other, part of some superinvariant,

but it had been shown, under some assumptions (conservation of chirality), that such a

superinvariant could not exist by itself in pure N = 1 supergravity. But, by taking a specific

(chirality-breaking) coupling of this term to a chiral multiplet in N = 1 supergravity, we

were indeed able to obtain the desired superinvariant. The W4
+ +W4

− term appeared after
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elimination of its auxiliary fields, by itself, without any couplings to the chiral multiplet

fields.

To summarize, we have demonstrated the existence of a new R4 superinvariant in d = 4

supergravity, a result that many people would find unexpected. The supersymmetrization

of this new R4 term in extended supergravity remains an open problem, but we found it

in N = 1 supergravity. As we concluded from our analysis of the dimensional reduction of

order α′3 gravitational effective actions, this new R4 term has its origin in the dimensional

reduction of the corresponding term in M-theory, a theory of which there is still a lot

to be understood. We believe therefore that the complete study of this term and its

supersymmetrization deserves further attention in the future.
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